THE TRANSITION TO ELECTRIC VEHICLES FOR THE SUSTAINABLE FUTURE OF THE JAKARTA METROPOLITAN AREA
Abstract
Global population growth and improved transportation The Jakarta metropolitan area contributes significantly to greenhouse gas emissions. The DKI Jakarta Provincial Government has implemented policies to encourage the adoption of electric vehicles, but the growth of electric vehicles in the Jakarta Metropolitan Area still faces challenges. The study aims to investigate the psychological and social factors influencing people's intention to switch to electric vehicles and their contribution to the region's Sustainable Development Goals (SDGs). The quantitative approach was taken using an online survey method on 200 Jakarta metropolitan communities with a purposive sampling withdrawal technique. This study chose the Partial Least Square-Structural Equation Modeling (PLS-SEM) analysis technique. The analysis showed that electric vehicle knowledge and environmental concern significantly positively affected subjective norms, attitudes and perceived behavioural control. These three psychological drivers found their role in the intention to switch to electric vehicles and SDGs Contribution. Recommendations focused on strengthening fiscal transportation policies, supporting infrastructure and sustainable transportation planning at metropolitan Jakarta and national scales.
References
Afthanorhan, A., Awang, Z., & Aimran, N. (2020). An extensive comparison of cb-sem and pls-sem for reliability and validity. International Journal of Data and Network Science, 4(4), 357–364. https://doi.org/10.5267/j.ijdns.2020.9.003
Afthanorhan, A., Awang, Z., Aimran, N., & Arifin, J. (2021). An Extensive Comparison Between CBSEM and Consistent PLS-SEM On Producing the Estimates of Construct Correlation in Applied Research. Journal of Physics: Conference Series, 1874(1), 012083. https://doi.org/10.1088/1742-6596/1874/1/012083
Arend, M. G., Franke, T., & Stanton, N. A. (2019). Know-how or know-why? The role of hybrid electric vehicle drivers’ acquisition of eco-driving knowledge for eco-driving success. Applied Ergonomics, 75, 221–229. https://doi.org/10.1016/j.apergo.2018.10.009
Ashraf, M. A. (2023). “Go green” – evaluating the roles of environmental concerns, environmental social norms and green technology in fostering pro-green banking behaviors. Journal of Financial Reporting and Accounting. https://doi.org/10.1108/JFRA-05-2023-0232
Becker, J.-M., Cheah, J.-H., Gholamzade, R., Ringle, C. M., & Sarstedt, M. (2023). PLS-SEM’s most wanted guidance. International Journal of Contemporary Hospitality Management, 35(1), 321–346. https://doi.org/10.1108/IJCHM-04-2022-0474
Burton, L. O., & Salama, A. M. (2023). Sustainable Development Goals and the future of architectural education – cultivating SDGs-centred architectural pedagogies. International Journal of Architectural Research: Archnet-IJAR, 17(3), 421–442. https://doi.org/10.1108/ARCH-08-2023-0201
Chan, S. H., & Lay, Y. F. (2018). Examining the reliability and validity of research instruments using partial least squares structural equation modeling (PLS-SEM). Journal of Baltic Science Education, 17(2), 239–251. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85045981234&partnerID=40&md5=817236bd48b135c9b924abd1ec9b4242
Chatterjee, S., Sreen, N., Sadarangani, P. H., & Gogoi, B. J. (2022). Impact of Green Consumption Value, and Context-Specific Reasons on Green Purchase Intentions: A Behavioral Reasoning Theory Perspective. Journal of Global Marketing, 35(4), 285–305. https://doi.org/10.1080/08911762.2021.1996670
Chaudhary, G. (2023). Environmental Sustainability: Can Artificial Intelligence be an Enabler for SDGs? Nature Environment and Pollution Technology, 22(3), 1411–1420. https://doi.org/10.46488/NEPT.2023.v22i03.027
Chuang, J.-H., Wang, J.-H., & Liou, Y.-C. (2020). Farmers’ knowledge, attitude, and adoption of smart agriculture technology in Taiwan. International Journal of Environmental Research and Public Health, 17(19), 1–8. https://doi.org/10.3390/ijerph17197236
Dudenhöffer, K. (2013). Why electric vehicles failed: an experimental study with PLS approach based on the technology acceptance model. Journal of Management Control, 24(2), 95–124.
Dwiananto, Y. I., Apriyanto, H., Soehadi, G., Hadiyati, N. A., Vitasari, A., Wiratmoko, A., Heldini, N., & Suhendra, A. (2022). Modeling projection of the number of charging stations and battery electric vehicles until 2030 in Jakarta Indonesia in order to reduce greenhouse gas (GHG) emissions. IOP Conference Series: Earth and Environmental Science, 1108(1). https://doi.org/10.1088/1755-1315/1108/1/012024
Ebolor, A., Agarwal, N., & Brem, A. (2022). Fostering the Sustainable Development Goals with technologies underpinned by frugal innovation. International Journal of Technology Management, 88(2–4), 155–174. https://doi.org/10.1504/IJTM.2022.121503
Eldiansyah, R., & Suwarni, E. (2023). Pengaruh Citra Merek, Harga, Kualitas Produk Terhadap Keputusan Pembelian Kendaraan Hybrid Toyota Kijang Innova Zenix:(Studi Kasus Pada Masyarakat di Bandar Lampung). JURNAL ADMINISTRASI BISNIS, 13(2), 130–138.
Fang, W., Xin, Y., & Zhang, Z. (2023). Eco-label knowledge versus environmental concern toward consumer’s switching intentions for electric vehicles: A roadmap toward green innovation and environmental sustainability. Energy and Environment. https://doi.org/10.1177/0958305X231177735
Fatmah, F. (2023). The driving factors behind urban communities’ carbon emissions in the selected urban villages of Jakarta, Indonesia. PLOS ONE, 18(11), e0288396. https://doi.org/10.1371/journal.pone.0288396
Firdaus, Z. F. (2023). Laporan Pkm-Laporan Praktik Kerja Distribusi Spasial Sumber Emisi Pm2, 5 Di Provinsi Dki Jakarta.
Gautam, V. (2022). Investigating Relationship between Environmental Knowledge and Attitudes towards Electric Vehicles: An Emerging Economy Context. Environment and Social Psychology, 7(2), 62–83. https://doi.org/10.18063/ESP.V7.I2.1527
Ghorbani, E., Fluechter, T., Calvet, L., Ammouriova, M., Panadero, J., & Juan, A. A. (2023). Optimizing Energy Consumption in Smart Cities’ Mobility: Electric Vehicles, Algorithms, and Collaborative Economy. Energies, 16(3). https://doi.org/10.3390/en16031268
Hailemariam, A., & Erdiaw-Kwasie, M. O. (2023). Towards a circular economy: Implications for emission reduction and environmental sustainability. Business Strategy and the Environment, 32(4), 1951–1965. https://doi.org/10.1002/bse.3229
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203
Haryadi, F. N., Simaremare, A. A., Ajija, S. R., Hakam, D. F., & Hadith Mangunkusumo, K. G. (2023). Investigating the Impact of Key Factors on Electric/Electric-Vehicle Charging Station Adoption in Indonesia. International Journal of Energy Economics and Policy, 13(3), 434–442. https://doi.org/10.32479/ijeep.14128
Heryanto, H., Dani, A. W., & Dawami, M. D. N. (2020). Kajian Tentang Uji Jalan Kendaraan Listrik Dengan Studi Kasus Perjalanan Bandung Jakarta. Jurnal Teknologi Elektro, 11(2), 64–71.
Higueras-Castillo, E., Singh, V., Singh, V., & Liébana-Cabanillas, F. (2023). Factors affecting adoption intention of electric vehicle: a cross-cultural study. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-023-03865-y
Huang, X., Lin, Y., Lim, M. K., Tseng, M.-L., & Zhou, F. (2021). The influence of knowledge management on adoption intention of electric vehicles: perspective on technological knowledge. Industrial Management and Data Systems, 121(7), 1481–1495. https://doi.org/10.1108/IMDS-07-2020-0411
Isik, M., Dodder, R., & Kaplan, P. O. (2021). Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates. Nature Energy, 6(1), 92–104. https://doi.org/10.1038/s41560-020-00740-2
Ju, N., & Hun Kim, S. (2022). Electric vehicle resistance from Korean and American millennials: Environmental concerns and perception. Transportation Research Part D: Transport and Environment, 109. https://doi.org/10.1016/j.trd.2022.103387
Kowalska-Pyzalska, A., Kott, M., & Kott, J. (2021). How much polish consumers know about alternative fuel vehicles? Impact of knowledge on the willingness to buy. Energies, 14(5). https://doi.org/10.3390/en14051438
Langbroek, J. H. M., Cebecauer, M., Malmsten, J., Franklin, J. P., Susilo, Y. O., & Georén, P. (2019). Electric vehicle rental and electric vehicle adoption. Research in Transportation Economics, 73, 72–82. https://doi.org/10.1016/j.retrec.2019.02.002
Lestari, P., Arrohman, M. K., Damayanti, S., & Klimont, Z. (2022). Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta. Atmospheric Pollution Research, 13(9), 101521. https://doi.org/10.1016/j.apr.2022.101521
Li, L., Long, X., Laubayeva, A., Cai, X., & Zhu, B. (2020). Behavioral intention of environmentally friendly agricultural food: the role of policy, perceived value, subjective norm. Environmental Science and Pollution Research, 27(15), 18949–18961. https://doi.org/10.1007/s11356-020-08261-x
Li, Z., & Wang, J. (2022). The Dynamic Impact of Digital Economy on Carbon Emission Reduction: Evidence City-level Empirical Data in China. Journal of Cleaner Production, 351. https://doi.org/10.1016/j.jclepro.2022.131570
Liguo, X., Ahmad, M., Khan, S., Haq, Z. U., & Khattak, S. I. (2023). Evaluating the role of innovation in hybrid electric vehicle-related technologies to promote environmental sustainability in knowledge-based economies. Technology in Society, 74. https://doi.org/10.1016/j.techsoc.2023.102283
Maybury, L., Corcoran, P., & Cipcigan, L. (2022). Mathematical modelling of electric vehicle adoption: A systematic literature review. Transportation Research Part D: Transport and Environment, 107. https://doi.org/10.1016/j.trd.2022.103278
Müller, J. M. (2019). Comparing technology acceptance for autonomous vehicles, battery electric vehicles, and car sharing—A study across Europe, China, and North America. Sustainability, 11(16), 4333.
Nanggong, A., & Rahmatia, R. (2019). Perceived Benefit, Environmental Concern and Sustainable Customer Behavior on Technology Adoption. The Asian Journal of Technology Management (AJTM), 12(1), 31–47. https://doi.org/10.12695/ajtm.2019.12.1.3
Nguyen-Phuoc, D. Q., Nguyen, N. A. N., Tran, P. T. K., Pham, H. G., & Oviedo-Trespalacios, O. (2023). The influence of environmental concerns and psychosocial factors on electric motorbike switching intention in the global south. Journal of Transport Geography, 113. https://doi.org/10.1016/j.jtrangeo.2023.103705
Ozili, P. K. (2023). The Acceptable R-Square in Empirical Modelling for Social Science Research. In Social Research Methodology and Publishing Results (pp. 134–143). https://doi.org/10.4018/978-1-6684-6859-3.ch009
Perwitasari, I. (2023). Contribution on space technology to sustainable development during pandemic COVID-19: Case Indonesia. AIP Conference Proceedings, 2765(1). https://doi.org/10.1063/5.0154406
Purwanto, A., & Sudargini, Y. (2021). Partial Least Squares Structural Squation Modeling ( PLS-SEM ) Analysis for Social and Management Research : A Literature Review. Journal of Industrial Engineering & Management Research, 2(4), 114–123.
Raihan, A., Muhtasim, D. A., Pavel, M. I., Faruk, O., & Rahman, M. (2022). An econometric analysis of the potential emission reduction components in Indonesia. Cleaner Production Letters, 3, 100008. https://doi.org/10.1016/j.clpl.2022.100008
Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2–an improved criterion for assessing discriminant validity in structural equation modeling. Industrial Management and Data Systems, 121(12), 2637–2650. https://doi.org/10.1108/IMDS-02-2021-0082
Roh, T., Seok, J., & Kim, Y. (2022). Unveiling ways to reach organic purchase: Green perceived value, perceived knowledge, attitude, subjective norm, and trust. Journal of Retailing and Consumer Services, 67. https://doi.org/10.1016/j.jretconser.2022.102988
Sajjad, A., Asmi, F., Chu, J., & Anwar, M. A. (2020). Environmental concerns and switching toward electric vehicles: geographic and institutional perspectives. Environmental Science and Pollution Research, 27(32), 39774–39785. https://doi.org/10.1007/s11356-020-08311-4
Sarstedt, M., Hair, J. F., Cheah, J. H., Becker, J. M., & Ringle, C. M. (2019). How to specify, estimate, and validate higher-order constructs in PLS-SEM. Australasian Marketing Journal, 27(3), 197–211. https://doi.org/10.1016/j.ausmj.2019.05.003
Sarstedt, M., Radomir, L., Moisescu, O. I., & Ringle, C. M. (2022). Latent class analysis in PLS-SEM: A review and recommendations for future applications. Journal of Business Research, 138, 398–407. https://doi.org/10.1016/j.jbusres.2021.08.051
Sharda, S., Garikapati, V. M., Goulias, K. G., Reyna, J. L., Sun, B., Spurlock, C. A., & Needell, Z. (2024). The electric vehicles-solar photovoltaics Nexus: Driving cross-sectoral adoption of sustainable technologies. Renewable and Sustainable Energy Reviews, 191. https://doi.org/10.1016/j.rser.2023.114172
Streukens, S., & Leroi-Werelds, S. (2016). Bootstrapping and PLS-SEM: A step-by-step guide to get more out of your bootstrap results. European Management Journal, 34(6), 618–632. https://doi.org/10.1016/j.emj.2016.06.003
Syafrizal, M., Sugiarto, B., Moersidik, S. S., Fortin, J., Hamani, N., & Bretagne, E. (2016). Dynamic vehicle emissions reduction with Technical and Behavioral approach. International Journal of Technology, 7(5), 871–880. https://doi.org/10.14716/ijtech.v7i5.534
Tufail, H. S., Yaqub, R. M. S., Alsuhaibani, A. M., Ramzan, S., Shahid, A. U., & S. Refat, M. (2022). Consumers’ Purchase Intention of Suboptimal Food Using Behavioral Reasoning Theory: A Food Waste Reduction Strategy. Sustainability, 14(14), 8905. https://doi.org/10.3390/su14148905
Uhrich, S. (2022). Sport spectator adoption of technological innovations: a behavioral reasoning analysis of fan experience apps. Sport Management Review, 25(2), 275–299. https://doi.org/10.1080/14413523.2021.1935577
Wessel, R. J. (2020). Policing the poor: The impact of vehicle emissions inspection programs across income. Transportation Research Part D: Transport and Environment, 78. https://doi.org/10.1016/j.trd.2019.102207
Westerhof, M., Reyes García, J. R., Haveman, S., & Bonnema, G. M. (2023). Transnational survey data on European consumers’ attitude and perceived knowledge about electric vehicles. Data in Brief, 49. https://doi.org/10.1016/j.dib.2023.109378
Wu, J., Liao, H., Wang, J.-W., & Chen, T. (2019). The role of environmental concern in the public acceptance of autonomous electric vehicles: A survey from China. Transportation Research Part F: Traffic Psychology and Behaviour, 60, 37–46. https://doi.org/10.1016/j.trf.2018.09.029
Xu, Y., Du, J., Khan, M. A. S., Jin, S., Altaf, M., Anwar, F., & Sharif, I. (2022). Effects of Subjective Norms and Environmental Mechanism on Green Purchase Behavior: An Extended Model of Theory of Planned Behavior. Frontiers in Environmental Science, 10. https://doi.org/10.3389/fenvs.2022.779629
Xu, Y., Hao, Y., Zhang, T., Yan, W., Wang, Y., Guo, D., Tan, X., Gao, X., & Li, J. (2021). Emission Reduction Efficiency Analysis Based on Characteristics of Vehicle Emissions. Emission Control Science and Technology, 7(4), 359–373. https://doi.org/10.1007/s40825-021-00200-7
Yuniza, M. E., Pratama, I. W. B. E., & Ramadhaniati, R. C. (2021). Indonesia’s incentive policies on electric vehicles: The questionable effort from the government. International Journal of Energy Economics and Policy, 11(5), 434–440. https://doi.org/10.32479/ijeep.11453
Zhang, H., Zhang, Y., Wang, Z., Zhang, S., Li, H., & Chen, M. (2023). A novel knowledge-driven flexible human–robot hybrid disassembly line and its key technologies for electric vehicle batteries. Journal of Manufacturing Systems, 68, 338–353. https://doi.org/10.1016/j.jmsy.2023.04.005
Zhang, W., Mas’od, A., & Sulaiman, Z. (2022). Moderating Effect of Collectivism on Chinese Consumers’ Intention to Adopt Electric Vehicles—An Adoption of VBN Framework. Sustainability (Switzerland), 14(19). https://doi.org/10.3390/su141912398
Zhang, Y., Zhou, R., Peng, S., Mao, H., Yang, Z., Andre, M., & Zhang, X. (2022). Development of Vehicle Emission Model Based on Real-Road Test and Driving Conditions in Tianjin, China. Atmosphere, 13(4). https://doi.org/10.3390/atmos13040595
Zhu, X., Ma, Y., Kong, L., & Yang, J. (2023). Understand consumers’ true views on new energy vehicles through behavioral reasoning and brand extension fit. Research in Transportation Business and Management, 49. https://doi.org/10.1016/j.rtbm.2023.100974

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Jurnal Kebijakan Pembangunan Daerah is licensed under a Creative Commons Attribution-NonCommercial-Sharealike 4.0 International License.